
ance is clear from the  fact that, for instance, it can- 
not be substituted for rest mass in the classical 
expression of Newton’s second law, or (less signi- 
ficantly) in the  formula for kinetic energy, to give 
the relativistic expressions. It is necessary, instead, 
to return to  the basic definitions of energy and 
momentum. 

The most important criticism of the relativistic 
mass approach is that it gives the impression that  the 
effects of relativity are  due to ‘something happening’ 
to the particle, whereas they are of course  due to the 
properties of space-time. Indeed, from  the space- 
time point of view the relativistic mass immediately 
loses much of its significance, as it  is not  an invariant 
under  Lorentz  transformations.  The TW approach, 
on  the other hand, emphasizes the space-time 
approach  as it focuses attention  on the concept of 
the momentum-energy four-vector, the scalar 
product of which is a  Lorentz invariant and essenti- 
ally equal to the square of the rest mass: 

While the  more conventional equation  equating 
E to m,c2 demonstrates  the connection between 
energy and mass, equation (1) has the  advantage of 
showing that the energy of a particle depends both 
on its rest mass and  on its  momentum. 

The difficulties mentioned above with the relati- 
vistic mass approach  do not occur in  the TW ap- 
proach, and it can be seen that a good case can be 
made for it to be adopted generally. Personal 
experience shows that with a little familiarity with 
the TW approach,  the relativistic mass concept 
appears rather artificial. 

p2 - E’/&‘ = - mo2c2. (1) 
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Traditionally,  most  undergraduate  textbooks on 
special relativity (e.g. Rosser 1967, French 1968) 
follow many of the specialized monographs (e.g. 
Moller 1952, Aharoni 1965) in using the concept of 
the relativistic mass m,(v)  of a particle, equal to 
y (v)m,, where m, is the rest mass of the particle and 
y (U) is equal to (1 - U ~ / C ~ ) - ~ / ~ .  In terms of this 
quantity, the momentum and energy of the  particle 
are given by m,v and m,cz. 

Recently, some  textbooks, in particular  the popu- 
lar and stimulating one by Taylor and Wheeler 
(1963) (to be referred to  as TW) have not used the 
relativistic mass, but have merely defined momentum 
and energy as ym,v and ym,c2. We shall briefly com- 
pare  the two  approaches, and then proceed to the 
main point of the article, which is to discuss a parti- 
cular  problem within the  TW  approach. 

Discussion of the  approaches 
The relativistic mass approach, as mentioned above, 
has become traditional,  though it is interesting that 
Einstein did not use it in his original paper or in his 
popular  account of relativity (Einstein 1905,  1956). 
The concept of relativistic mass is obviously a  con- 
venient simplification in  the definitions ofmomentum 
and energy. It is also useful in the expression for  the 
total  momentum of a system, and its use enables a 
centre of relativistic mass to be  defined and used. 
The fact that it is simply related to energy means 
that it has many of the important properties of 
energy; it is conserved and the relativistic masses of 
a  number of particles sum to give the  total relativistic 
mass of the system of particles. 

But the relativistic mass cannot be regarded as a 
fundamentally important quantity. Precisely because 
it is essentially identical to energy, it adds little to  an 
understanding of the  situation that is not  known  from 
energy considerations. That it is  of limited signific- 

Mass of a system 
Attention is obviously directed by equation (1) 
towards the rest mass, but  there is one aspect of the 
equation, fully accepted by TW, which has been 
found to confuse students and  to lead them into 
error. (It will be shown later that this difficulty  is not 
avoided in the relativistic mass approach.) 

The problem is the  application of equation (1) to 
a system of particles which are not all moving at the 
same velocity. We shall take  the simplest example, 
that of two particles of equal rest mass m,, travelling 
towards  each  other with equal speeds L’ in a  particular 
frame. (Note that I use the term ‘rest mass’ to avoid 
any confusion, although in the context of the TW 
approach  the simple term ‘mass’ would imply ‘rest 
mass’ as no  other type of mass is considered.) In 
the frame we are considering, the  momentum of the 
system is found, of course, to be zero, while the 
energy is equal to 2ymoc2. Application of equation 
(1)  yields the result that the rest mass of the system 
is equal to 2ymo, i.e. it  is greater than the  sum of the 
rest masses of the  individual particles. (It is ob- 
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viously a general result that, in the frame in which o of the velocity of the particles in the zero momen- 
thele is zero momentum, the rest mass of the system tum frame would mean that energy and momentum 
is equal, apart from  factors of c ,  to the energy of the 
system.) 

There is nothing incorrect physically in this  reason- 
ing; careful use of the ideas involved can lead to  no 
errors in results. It must be admitted,  though, that 
the idea of the rest mass of a system of particles 
being greater than the  sum of the rest masses of the 
individual particles is very  difficult to accept. In the 
course of obtaining  a full grasp of relativistic physics, 
a  student has to come to terms with many ideas 
completely foreign to his everyday experience, but 
this does  not imply that another  should be added if 
it is not necessary. There is an additional disadvant- 
age here in that the  student may not meet the diffi- 
culty in an introductory discussion of relativistic 
mechanics, which would be concerned primarily with 
single particles, and so he could be unprepared for 
problems concerning systems of particles, and 
suffer major confusion. 

Incidentally, in the relativistic mass approach  as 
well, thele is a complication when the properties of 
a system of particles are considered. It is true  that 
the total momentum P and the  total energy E are 
lelated to  the  sum of the relativistic masses M, in the 
same way as the  corresponding  quantities are related 
for  a particle. The velocity to be used in this case is 
the velocity U, of the  centre of relativistic mass. But 
there is no way  of obtaining  the relativistic mass of 
the system, apart from  adding  the individual 
relativistic masses. In other words, M ,  cannot be 
expressed as h i ,  (1 - ui2/c2)-1/2,  or indeed by any 
similar expression with a different function of the 
rest masses in the  numerator.  Thus at some stage in 
this  method it is necessary to consider individual 
particles;  the  formulation  cannot be applied solely 
with the use of quantities  for  the system. There is 
some similarity to  the situation with the TW 
approach. 

Inelastic  collisions 
We shall now return to the TW approach and see 
how this definition of the rest mass of a system may 
lead to lack of clarity of thought, and even error. We 
will discuss an inelastic collision with  coefficient of 
restitution zero, between the two particles mentioned 
above. There are two cases. The first is where the 
particles are elementary, and a  third elementary 
particle is produced in the collision. Its rest mass 
must equal 2ym, and this of course is the  true rest 
mass of the particle, provided it is formed in its ground 
state. The final particle is not in any sense to be 
thought of as ‘composed of’ the particles which gave 
rise to its  creation.  (In practice the reaction would 
be  difficult to induce; the slightest departure from 

could not  both be conserved.) 
This analysis is applied by TW (p121) to the case 

of two macroscopic particles, such as balls of putty, 
coalescing on collision. This is ascribing a rest mass 
of 2ym, to the composite ball of putty immediately 
after collision. In effect, the expression for the rest 
mass of the system includes the kinetic energy, that 
is to say the energy of rotation of the balls about 
their centre of mass, and the energy involved in the 
excitation of internal degrees of freedom of the 
system. In time the  rotational energy will be lost 
through friction, and  the internal energy will  be 
transferred as  heat, and possibly light and sound. 
Finally we are left with a ball of putty of rest mass 
2m,. 

This description appears unhelpful and liable to 
confuse. The very real differences  between the two 
types of inelastic collisions are obscured because the 
rest mass directly after collision is made to be the 
same in each case. It is also physically unconvincing 
to talk of ‘the collision’ as if it  were a single event. 
In practice there will be numerous interactions 
between atoms in the balls of putty occurring over 
a finite time, and even during this period of time 
energy will be lost from  the balls as  heat.  Thus to 
describe a state after the collision in  which the rest 
mass is 2ym, appears to be aetually incorrect. 

The point of these remarks is that when the TW 
definition of the rest mass of the system is used, 
attention is directed towards  unimportant  matters 
such as the flow of energy from the system to its 
surroundings, and diverted from the real issues, the 
conservation of energy and momentum and the 
possibility of the  sum of the rest masses of the 
particles of the system not remaining constant. 

Definition of ‘single particle’ 
Thus, while 1 would, as  stated above, commend the 
main  structure of the  TW approach, it would be 
preferable to use equation (1) for ‘single particles’. 
The term ‘single particle’ obviously needs some 
clarification, as many of the entities to be considered 
are eminently not elementary, and even the majority 
of the so called elementary particles are thought to 
have internal structure. The suitable definition is that 
a number of particles may be considered to be a 
‘single particle’ if their motion is the  resultant of  (i) 
a  translational  motion  common to all the particles, 
and (ii) motion of internal degrees of freedom of the 
‘single particle’ with the energy appropriate  to the 
temperature of the surroundings. In the zero 
momentum frame, (i) is eliminated. To explain the 
point of this definition we shall consider further  the 
two classes of inelastic collision described above. 
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In the first class, that between two elementary equilibrium with its surroundings. We do  not, there- 
particles, we would obviously not consider treating  fore, use equation U), but define the rest mass of the 
both particles together  as a ‘single particle’, because 
the motion cannot be considered thermal at any 
temperature.  Each individual elementary particle, 
however, is to be considered a ‘single particle’, even 
if internal degrees of freedom are present, because 
the amount of energy attributable to these degrees 
of freedom is that appropriate  to that  temperature. 

It is not necessary to discuss the  relation between 
the rest mass of the ‘single particle’ and those of its 
constituents, but in fact we have: 

m, = Z m l ,  - Eb/c2 ,  (2) 

where Eb is the binding energy of the particle calcu- 
lated  in  the  zero  momentum  frame.  This is, in fact, 
an extension to the use of equation ( 1 )  for  the ‘single 
particle’ as that equation states that m,, equals the 
sum of the individual rest masses added to the 
kinetic energy (divided by cz) calculated in the zero 
momentum frame. To this we must add the (nega- 
tive) potential energy (divided by c2) to give equation 
(2); equation (1) only is meant to apply to noninter- 
acting particles. 

The particle produced in the collision may also be 
considered to be a ‘single particle’, at least provided 
it is formed in its ground  state. If this is so, the 
internal degrees of freedom are in equilibrium with 
the surroundings, and we use equation (1) to obtain 
a value for  the rest mass of 2ym,,. If the particle is 
formed in an excited state, we do not consider it to 
be a ‘single particle’ until it decays to its ground 
state  (or in other words until its  internal degrees of 
freedom come into equilibrium with the surround- 
ings). Thus if application of equation (1) to the 
particle in its  ground state yields the value m, (less 
than 2 ym,,), we define its mass to be m, even when it 
is in its excited state. The energy of excitation is then 

Before the collision, the rest mass is  defined as 
being equal to the  sum of the rest masses of the two 
‘single particles’. Thus the initial rest mass is 2m,, 
and  the final rest mass is 2ym,,, provided the particle 
is formed  in  its  ground  state. So in the collision, 
kinetic energy is transformed into rest mass. 

When we turn  to the second class of inelastic 
collision, that which involves balls of putty, we note 
that in this case there are obviously internal degrees 
of freedom for each ball of putty. Nevertheless, 
because these degrees of freedom are again in 
equilibrium at the  temperature of the  surroundings, 
it is possible to consider them  as ‘single particles’ 
and equation (1) may  therefore be applied. The 
same applies to  the final ball of putty once it has 
reached equilibrium with its  surroundings,  This 
does not  apply  during the period following the 
collision, however, when the composite ball is not in 

i 
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ball at this stage to be equal to the final rest mass 
when it has reached equilibrium. 

This final rest mass is  given  by an equation 
similar to equation (2), but in this case the binding 
energy is entirely negligible, and so the final rest 
mass is equal to the  sum of the initial rest masses. 
Thus  the rest mass of the system is constant  through- 
out in this case, energy being transformed from 
translational energy to rotational and intelnal energy 
of the composite ball of putty, and finally to heat. 

To  sum:up, we do  not use equation (1) if the sys- 
tem consists of noninteracting particles with differ- 
ing translational  motions, or  for particles combined 
to  form a single entity, when the internal degrees of 
freedom are not in equilibrium with the  surroundings. 
In the first case, the rest mass of the system is to be 
defined as  the  sum of the rest masses of the particles. 
In the second case, the rest mass is  defined to have 
the value it will have once equilibrium is reached, 
which is essentially equation (2). The binding 
energy in this equation may vary from the putty 
case, where .it  is negligible, to the case of a nucleon 
composed (possibly) of quarks, where it may be  very 
much larger than the rest mass of the nucleon 
multiplied by c2. 

Conclusion 
It  has been shown that the  TW definition of the rest 
mass of a system can lead to confusion. Alternative 
definitions of rest mass have been proposed, which 
agree closer with our expectations. 

REFERENCES 
Aharoni J 1965 The Special Theory of Relativity (Oxford: 

Einstein A 1905 Annln Phys. 17 891 
Einstein A 1956 The Meaning of Relativity 6th  edn 

French A  P 1968 Special Relativity (London: Nelson) 
Maller C 1952 The Theory  ofRelativity (Oxford:  Claren- 

Rosser W G V 1967 Introductory Relativity (London: 

Taylor E F and  Wheeler J A 1963 Space-time  Physics 

Clarendon  Press) 

(London : Methuen) 

don Press) 

Butterworth) 

(San-Francisco: W H Freeman) 

Phys ics  Education January 1976 57 


